
FIBARO System

REST API Developer Documentation

Conditions of use

How API works

How Fibaro works

Introduction

Getting started

FGHC Rest API Functions

Note:This documentation describes features available in Home Center
version 4.0 Beta or newer.

Introduction

Welcome to the Fibaro Home Center Rest API,

FHCR API is a tool to help developers everywhere create amazing applications
using unlimited capabilities of our system. Fibaro provides a simple RESTful API
where each type of resource has a URL that you can interact with. All resources
are encoded as JSON objects.

Using this website, you will get to know what kind of functions are available, find
out how to use them and what are their responses. We hope this will help you to
truly use Fibaro as you want it, by making new apps, websites and many others,
integrating our system into something else or just playing around.

The software, trademarks documentation, and any other materials we provide to
help you develop Fibaro Home Center, including especially the interface
specifications “API” belong to Fibar Group. It may happen that working on an
app suggests an idea to you for an improvement in the API or our materials. If
you suggest any improvements to us and we adopt them, they become part of
the platform used by everyone, and belong to us.

The interface between your apps and the Home Center will evolve over time, but
we will do our best to maintain backwards compatibility and will inform you
timely before we roll out updates.

You may refer to Fibaro in plain text but you are not allowed to use Home
Center name and branding or to use Fibaro in any logo or graphics. What you
are allowed to do is to experiment and have fun.

Conditions of use

You are free to develop any kind of application you can imagine with Fibaro
system. There are just a few rules and restrictions you need to keep in mind:

You may not distribute the documentation shown in this document except by
links to the site itself or, if you use another method, these conditions of use
must be attached.

We want all your apps to work with our API to form a rich ecosystem of
interoperable applications, so it is a condition of access to our API
documentation that you do not use it to develop or distribute any systems or
devices which interpret the Fibaro API.

It may happen that working on an app suggests an idea to you for an
improvement in the API. If you suggest any improvements to us and we adopt
them, they become part of the platform used by everyone, and belong to Fibaro,
you will make no claims in this respect.

Make sure it is very clear from all you do that your app belongs to you and not
to Fibaro. Do not use any Home Center or Fibaro branding trademarks or trade
dress in any logo or graphics.

If you receive our API developer materials, you cannot claim ownership or IP
rights in any improvements of that material or in any of the APIs either with
respect to us or to other Fibaro app developers.

Please don’t make any applications that are obscene, not compliant with laws
and regulations, offensive or discriminatory or that infringe someone else’s
rights.

So, just as a reminder, before you can start having fun, you agree that by using
the API provided here to you, you accept these terms of use.

How API works

The FHCR API is your primary tool for controlling your smart home. This is a
RESTful interface over HTTP. The purpose of this web service interface is to give
every single device in your system and every controllable parameter a URL in
your local network. This means that controlling the system is achieved by simply
sending a new value to this local URL.

You can simply discover the current status of any variable by getting a response,
check it and make a change just by sending its the new value. That’s the basic
idea of a RESTful interface. All responses and new values are sent and returned
in JSON (JavaScript Object Notation) with UTF8 encoding so it’s easy to
generate or parse.

How Fibaro works

Fibaro is a wireless system, based on Z-Wave technology. Fibaro provides many
advantages when compared to similar systems. In general, radio systems create
a direct connection between the receiver and transmitter. However, the radio
signal is weakened by various obstacles located in its path (apartment walls,
furniture, etc.) and in extreme cases it fails to transfer required data. The
advantage of Fibaro System is that its devices, apart from being transmitters
and signal receivers, also duplicate signal. When a direct connection path
between the transmitter and the receiver cannot be established, the connection
may be achieved through other intermediate devices.

Fibaro is a bi-directional wireless system. This means that the signal is not only
sent to the receivers but also the receivers send the confirmation of its
reception. This operation confirms their status, which checks whether they are
active or not. Safety of the Fibaro System transmission is comparable to the
safety of transmission in data bus wired systems.

Fibaro operates in the free bandwidth for data transmission. The frequency
depends on radio regulations in individual countries. Each Fibaro network has its
own unique network identification number (home ID), which is why it is possible
to co-operate two or more independent systems in a single building without any
interference. In addition, each device gets its own ID – Node ID. Each, newly
added device gets two ID numbers – HOME ID and Node ID. Home ID is the
same for all devices within the network, while Node ID is unique for a given
node. If another controller (secondary master) is added to the network, it gets
the same HOME ID as the main controller.

Although Z-Wave is quite a new technology, it has already become recognized
and officially a binding standard, similarly to Wi-Fi. Many manufacturers in
various industries offer solutions based on Z-Wave technology, guaranteeing
their compatibility. This means that the system is open and it may be extended
in the future. Find more information at www.fibaro.com
(http://www.fibaro.com/).

Fibaro generates a dynamic network structure. After Fibaro System is switched
on, the location of its individual components is automatically updated in real-
time through status confirmation signals received from devices operating in a
“mesh” network.

Getting started

Make sure you have your Fibaro Home Center working properly. In case of
problems please go here, we will help you as soon as possible.

The fastest way to learn how to build apps which control our system is to use
the simple test web app built into the main controller. This lets you directly input
commands and send them.

First you need is to discover Home Center IP address. You can use Fibaro Finder
or just type in IP address into your web browser.

The simplest thing you can do with a FHCR API resource URL is GET it. (When
using REST API via HTTP, you “read” something by using the HTTP GET method).

Once you have the IP visit the following address in your web browser.

http://<Home Center IP address>/docs

This website contains a list of available functions grouped into the categories.
You can simply click one of theme to expand a list of associated functions and
methods with short descriptions.

http://www.fibaro.com/

Now you can select one operation by clicking it. It will show its Response Class,
model and model schema. Detailed description is available at this website under
“API” section. “Try it out” button lets you test selected operation on your
connected Fibaro Home Center controller.

To retrieve a specific resource you can also append its identifier to the end of
the URL. The example below shows retrieving a specific device using the HTTP
GET method.

http://192.168.77.80/api/devices/1771

Document organization

API functions are divided into five main categories. Each of them contains
function URL, description, available methods, response with table of variables
and example.

o General API

o Settings API

o Panels API

o Plugins API

o Other

Glossary terms

API – Application Programming Interface

REST – Representational State Transfer

URL – Uniform Resource Locator

JSON – JavaScript Object Notation

FHCR API – Fibaro Home Center Rest API

Timestamp – a way to track time as a running total of seconds. This count starts
at the Unix Epoch on January 1st, 1970 at UTC.

Message structure and response

The FHCR API consists of a set of commands that can be called over a REST web
service. The API commands fall into one of 4 categories, depending on the HTTP
method used:

Method: GET

Used for: Reading specific data from the Home Center controller.

Returns: JSON containing the requested resource.

Method: PUT

Used for: Modifying existing data on the Home Center controller.

Returns: A list containing one item per modified parameter.

Method: POST

Used for: Adding new data to the Home Center controller.

Returns: A list containing one item per created resource.

Method: DELETE

Used for: Deleting data from the Home Center controller.

Returns: A list containing one item per deleted resource.

Commands using PUT and POST methods will normally require a message body
to be attached to the request. The message body must be formatted using
JSON. More details and examples for formatting the message body can be found
in the documentation for each command.

Response codes

API may return the following HTTP response codes

HTTP Status Code Description

200 OK

400 Bad request – missing parameter

401
Unauthorized – authentication
required

403
Forbidden – valid request, no
server response

404 Not found – no content

405 Method not allowed – no content

500
Internal server error – unexpected
condition

501 Not implemented – no content

502
Bad gateway – invalid response
from the server

503
Service unavailable – server
overloaded or temporarily down for
maintenance

504
Gateway timeout – no timely
response from the server

Data types

Type Description

Number
A whole number (not a fractional
number) that can be positive,
negative, or zero

String A sequence of characters

Boolean
A boolean value which can take
only the true or false values

Array
A variable that holds multiple
values of the same type

Note:

As you can see, by default a lot of data types are displayed as strings. It's
necessary to add a specified custom header to get the correct RESTful requests
data types as described in following example.

Example:

1. Typing an address like http://HC2IP/api/devices will give us an old and
incomplete data structure.

2. If our goal is to get the correct data types (eg. bool, int, etc.), we need to
install the REST Console, such as
https://chrome.google.com/webstore/detail/rest-
console/cokgbflfommojglbmbpenpphppikmonn
(https://chrome.google.com/webstore/detail/rest-
console/cokgbflfommojglbmbpenpphppikmonn) in our web browser.

3. Now you can type the address like http://HCIP/api/devices into the Request
UR field as presented on the screenshot below.
Custom Headers (/files/rest-api/restapi-1.png)

4. Then please type Fibaro Header - X-Fibaro-Version:2 into the Custom
Headers field as showed below.
Custom Headers (/files/rest-api/restapi-2.png)

5. You will see the correct data types as a response.

FGHC Rest API Functions
Settings

General settings

URL: /api/settings/info

Methods: GET, PUT

Description: Returns a list of parameters of Home Center controller, such as
serial number, soft version or default language, etc.

Response: Gets an object containing all controller’s general settings.

Name Type Description

serialNumber String
Home Center serial
number

mac String
Mac address of the
controller

softVersion String
Version of installed
software

beta Boolean Beta software status

zwaveVersion String
Version of Z-wave
software

serverStatus Number
Status of server in
seconds

DefaultLanguage String
Default interface
language

sunsetHour String Time of sunset

sunriseHour String Time of sunrise

hotelMode Boolean Hotel mode status

updateStableAvailab
le

Boolean
Availability of stable
update

temperatureUnit String Temperature unit

updateBetaAvailable Boolean
Availability of beta
version update

newestBetaVersion String
Newest version of
beta

batteryLowNotificatio
n

Boolean
Battery low
notification status

https://chrome.google.com/webstore/detail/rest-console/cokgbflfommojglbmbpenpphppikmonn
https://developer.fibaro.com/files/rest-api/restapi-1.png
https://developer.fibaro.com/files/rest-api/restapi-2.png

smsManagement Boolean
Sms notifications
status

Example:

{

 "serialNumber": "HC2-000584",

 "mac": "38:60:77:4e:5c:11",

 "softVersion": "3.590",

 "beta": false,

 "zwaveVersion": "3.42",

 "serverStatus": 1404743890,

 "defaultLanguage": "en",

 "sunsetHour": "21:08",

 "sunriseHour": "04:51",

 "hotelMode": false,

 "updateStableAvailable": false,

 "temperatureUnit": "C",

 "updateBetaAvailable": true,

 "newestBetaVersion": "3.591",

 "batteryLowNotification": true,

 "smsManagement": false

}

Backups

URL: /api/settings/backups

Methods: GET

Description: Returns a list of saved controller’s backups and their parameters
like number of devices, rooms or scenes, etc.

Response: Gets an object containing stored backups.

Name Type Description

id Number Backup id

timestamp Number
Timestamp in
seconds

devices Number Number of devices

rooms Number Number of rooms

scenes Number Number of scenes

description String
Backup description
created by the user

Example:

{

 "id": 9,

 "timestamp": 1405506755,

 "devices": 143,

 "rooms": 5,

 "scenes": 10,

 "description": "alpha->3.903"

}

Location

URL: /api/settings/location

Methods: GET, PUT

Description: Returns a list of parameters related to date, time and location
configured by user in Home Center interface.

Response: Gets objects containing date, time and location settings.

Name Type Description

houseNumber Number House number

timezone String Selected timezone

ntp Boolean
Network time
protocol status

ntpServer String
Selected ntp server
path

date: day, month,
year

Number Set date

time: hour, minute Number Set time

latitude Number Set latitude

longitude Number Set longitude

city String Selected city

temperatureUnit String
Selected
temperature unit

windUnit String Selected wind unit

timeFormat Number Time format (24/12)

dateFormat String Date format

Example:

{

 "houseNumber": 3,

 "timezone": "Europe/Warsaw",

 "ntp": true,

 "ntpServer": "",

 "date":

 {

 "day": 16,

 "month": 7,

 "year": 2014

 },

 "time":

 {

 "hour": 15,

 "minute": 11

 },

 "latitude": 52.425035319943,

 "longitude": 16.9306182861328,

 "city": "Poznan",

 "temperatureUnit": "C",

 "windUnit": "km/h",

 "timeFormat": 24,

 "dateFormat": "dd.mm.yy"

}

Network settings

URL: /api/settings/network

Methods: GET, PUT

Description: Returns a list of parameters related to network connection, such
as DHCP status, remote access availability or IP number.

Response: Gets an object containing network settings.

Name Type Description

dhcp Boolean DHCP status

ip String
Home Center IP
address

mask String Subnet mask

gateway String Default gateway

dns String DNS server address

remoteAccess Boolean
Remote access
availability status

Example:

{

 "dhcp": true,

 "ip": "192.168.100.45",

 "mask": "255.255.254.0",

 "gateway": "192.168.100.1",

 "dns": "192.168.100.1",

 "remoteAccess": true

}

General

Devices

URL: /api/devices

Methods: GET, DELETE, POST, PUT

Description: Returns a list of devices, containing the main controller, all added
devices, virtual devices and plugins as well, including all their parameters,
properties and actions. Number of available data depends on the selected
device.

Response: Gets an array of objects containing all devices and their parameters.

Name Type Description

id Number Device ID

name String Device name

roomID Number Room ID

type String Device type

baseType String Base type

enabled Boolean Device status

visible Boolean Visibility status

parentId Number Parent device ID

remoteGatewayId Number Remote gateway ID

viewXml Boolean Xml view status

configXml Boolean
Xml configuration
status

interfaces Array Available interfaces

created Number Time of creation

modifier Number
Time of last
modification

sortOrder Number Interface sort order

properties:

zwaveCompany String Z-Wave chip
producer

zwaveInfo String
Z-Wave protocol
type and version

zwaveVersion Number Z-Wave version

wakeUpTime Number
Wake up time in
seconds

pollingTimeSec Number
Polling time in
seconds

batteryLevel Number
Battery level in
percent

alarmDelay String
Time of alarm delay
in seconds

alarmExclude String
Alarm exclusion
status

alarmTimeTimestam
p

String
Alarm timestamp in
seconds

armConditions String
Conditions of arming
an alarm

armConfig String Arming configuration

armDelay String
Arming delay in
seconds

armError String Error of arming

armTimeTimestamp String
Arming timestamp in
seconds

armed String Status of arming

batteryLowNotificatio
n

String
Low battery
notification status

configured String
Check if device is
configured

dead String
Check if device is
dead

deviceControlType String Device control type

deviceIcon String Interface device icon

emailNotificationID String
ID of email
notification

emailNotificationTyp
e

String
Type of email
notification

endPointId String ID of endpoint

fibaroAlarm String
Status of usage in
Fibaro Alarm

interval String Interval in seconds

lastBreached String
Time of the last
breach

liliOffCommand String Lili turn off command

liliOnCommand String Lili turn on command

log String Log status

logTemp String
Temperature from
log

manufacturer String
Manufacturer of the
device

markAsDead String
Mark as dead if dead
status

model String Model of the device

nodeId String Node ID

parametersTemplate String
Template of
paramaters

productInfo String Product version info

pushNotificationID String Push notification ID

pushNotificationType String
Type of push
notification

remoteGatewayId String
ID of the remote
gateway

saveLogs String
Saving logs to event
panel status

smsNotificationID String ID of sms notification

smsNotificationType String
Type of sms
notification

useTemplate String
Template usage
status

value String Current value

actions:

forceArm Number Force arming of the
device

meetArmConditions Number
Meet device arming
conditions

reconfigure Number
Perform device
reconfiguration

setArmed Number Set device armed

setInterval Number Set interval

Example:

{

 "id": 1898,

 "name": "1897.0",

 "roomID": 0,

 "type": "com.fibaro.FGMS001",

 "baseType": "com.fibaro.motionSensor",

 "enabled": true,

 "visible": true,

 "parentId": 1897,

 "remoteGatewayId": 0,

 "viewXml": false,

 "configXml": false,

 "interfaces":

 [

 "battery",

 "zwave",

 "zwaveWakeup"

],

 "properties":

 {

 "zwaveCompany": "Fibargroup",

 "zwaveInfo": "3,3,67",

 "zwaveVersion": 2.6,

 "wakeUpTime": 4000,

 "pollingTimeSec": 0,

 "batteryLevel": 100,

 "alarmDelay": "0",

 "alarmExclude": "false",

 "alarmTimeTimestamp": "0",

 "armConditions":

 {

 "auto": false,

 "devices":

 [

 {

 "id": 1898,

 "propertyName": "value",

 "propertyValue": "0"

 }

],

 "time": 0

 },

 "armConfig": "0",

 "armDelay": "0",

 "armError": "{}",

 "armTimeTimestamp": "0",

 "armed": "false",

 "batteryLowNotification": "true",

 "configured": "true",

 "dead": "false",

 "deviceControlType": "0",

 "deviceIcon": "90",

 "emailNotificationID": "0",

 "emailNotificationType": "0",

 "endPointId": "0",

 "fibaroAlarm": "false",

 "interval": "0",

 "lastBreached": "1405522313",

 "liliOffCommand": "",

 "liliOnCommand": "",

 "log": "",

 "logTemp": "",

 "manufacturer": "",

 "markAsDead": "true",

 "model": "",

 "nodeId": "97",

 "parametersTemplate": "270",

 "productInfo": "1,15,8,0,16,1,2,6",

 "pushNotificationID": "0",

 "pushNotificationType": "0",

 "remoteGatewayId": "0",

 "saveLogs": "true",

 "smsNotificationID": "0",

 "smsNotificationType": "0",

 "useTemplate": "true",

 "value": "false"

 },

 "actions":

 {

 "forceArm": 0,

 "meetArmConditions": 0,

 "reconfigure": 0,

 "setArmed": 1,

 "setInterval": 1

 },

 "created": 1405516322,

 "modified": 1405516322,

 "sortOrder": 121

}

Sections

URL: /api/sections

Methods: GET, DELETE, POST, PUT

Description: Returns a list of sections, their names, sort orders, etc.

Response: Gets an object containing all sections defined in the interface.

Name Type Description

id Number Section ID

name String Section name

sortOrder Number Interface sort order

{

 "id": 2,

 "name": "Floor",

 "sortOrder": 2

}

Rooms

URL: /api/rooms

Methods: GET, DELETE, POST, PUT

Description: Returns a list of rooms, their names, icons, sort orders, etc.

Response: Gets objects containing all rooms defined in the interface.

Name Type Description

id Number Room ID

name String Section name

sectionID Number Section ID

icon String Room icon

defaultThermostat Number Main thermostat

sortOrder Number Interface sort order

defaultSensors:

temperature Number Main temperature
sensor

humidity Number
Main humidity
sensor

light Number Main light sensor

Example:

{

 "id": 1,

 "name": "bathroom",

 "sectionID": 1,

 "icon": "room_bathroom",

 "defaultSensors":

 {

 "temperature": 1701,

 "humidity": 1777,

 "light": 0

 },

 "defaultThermostat": 0,

 "sortOrder": 1

}

Scenes

URL: /api/scenes

Methods: GET, DELETE, POST, PUT

Description: Returns a list of all saved scenes and their parameters, such as
name, id and sort order.

Response: Gets an object containing scenes defined in the interface.

Name Type Description

id Number Section ID

name String Section name

type String Type of scene

properties String Properties of scene

roomID Number Room ID

iconID Number Icon ID

enabled Boolean Scene status

autostart Boolean Autostart status

protectedByPIN Boolean PIN protection status

killable Boolean
Ability to be
interrupted

runningInstances Number
Number of running
instances

isLua Boolean
Status of being LUA
scene

liliStartCommand String Lili start command

liliStopCommand String Lili stop command

sortOrder Number Interface sort order

Example:

{

 "id": 20,

 "name": "New Scene",

 "type": "",

 "properties": "",

 "roomID": 0,

 "iconID": 5,

 "enabled": true,

 "autostart": false,

 "protectedByPIN": false,

 "killable": true,

 "runningInstances": 0,

 "isLua": false,

 "liliStartCommand": "",

 "liliStopCommand": "",

 "sortOrder": 119

}

Users

URL: /api/users

Methods: GET, DELETE, POST, PUT

Description: Returns a list of users, their names, types, rights, etc.

Response: Gets an object containing all users added to the interface.

Name Type Description

id Number Section ID

name String Section name

type String Type of user

email String User’s email address

hasGPS Boolean GPS user status

deviceRights Array
Rights to edit
devices

sceneRights Array Rights to edit scenes

hotelRoom Number Hotel mode

sendNotification Boolean
Notifications sending
status

tracking Number Tracking status

usePin Boolean PIN usage status

useOptionalArmPin Boolean
Optional arming PIN
status

initialWizard Boolean
Sort order in the
interface

Example:

{

 "id": 1919,

 "name": "test",

 "type": "user",

 "email": "test@test.pl",

 "hasGPS": false,

 "deviceRights":

 [

],

 "sceneRights":

 [

],

 "hotelRoom": 0,

 "sendNotifications": false,

 "tracking": 0,

 "usePin": false,

 "useOptionalArmPin": false,

 "initialWizard": true

}

Global variables

URL: /api/globalVariables

Methods: GET, DELETE, POST, PUT

Description: Returns a list of global variables, their values and parameters.

Response: Gets an object containing all global variables.

Name Type Description

name String Name of variable

value String Variable value

readOnly Boolean Read only status

isEnum Boolean Enum type status

Example:

{

 "name": "var1",

 "value": "1",

 "readOnly": false,

 "isEnum": false

}

RGB programs

URL: /api/RGBPrograms

Methods: GET, DELETE, POST, PUT

Description: Returns a list of RGB lights programs.

Response: Gets an object containing RGB lights programs.

Name Type Description

id Number Program ID

name String Program name

Example:

{

 "id": 1,

 "name": "Fireplace"

}

Tracking schedules

URL: /api/trackingSchedules

Methods: GET, DELETE, POST, PUT

Description: Returns a list of weekly tracking schedules divided into four parts
of the day.

Response: Gets an object containing weekly tracking schedules.

Name Type Description

id Number
Current weather
condition code

MondayMorningHou
r

String
Monday morning
start hour

MondayMorningHou
rTo

String
Monday morning
end hour

MondayMorningTim
e

String
Monday morning
time

Example:

{

 "id": 2,

 "MondayMorningHour": "6",

 "MondayMorningHourTo": "12",

 "MondayMorningTime": "0",

 "MondayDayHour": "12",

 "MondayDayHourTo": "18",

 "MondayDayTime": "0",

 "MondayEveningHour": "18",

 "MondayEveningHourTo": "24",

 "MondayEveningTime": "0",

 "MondayNightHour": "24",

 "MondayNightHourTo": "6",

 "MondayNightTime": "0"

}

Linked devices

URL: /api/linkedDevices

Methods: GET, DELETE, POST, PUT

Description: Returns a list of linked devices and their parameters.

Response: Gets an array of objects containing all linked devices.

Name Type Description

id Number Link ID number

name String Linked device name

roomID Number Room ID number

type String Linked device type

deviceID Number Device ID number

created Number Time of creation

modified Number
Time of last
modification

sortOrder Number Interface sort order

devices Array Array of linked
devices

id Number
Linked device ID
number

innerType String Device inner type

Example:

{

 "id": 3,

 "name": "New Linked Devices",

 "roomID": 1,

 "type": "heating",

 "deviceID": 1716,

 "devices":

 [

 {

 "id": 1854,

 "innerType": ""

 }

],

 "created": 1405605040,

 "modified": 1405605040,

 "sortOrder": 111

}

Virtual devices

URL: /api/virtualDevices

Methods: GET, DELETE, POST, PUT

Description: Returns a list of virtual devices, their source codes, properties and
actions.

Response: Gets an array of objects containing all virtual devices.

Name Type Description

id Number
Virtual device ID
number

name String Virtual device name

roomID Number Room ID number

type String Type of device

created Number Time of creation

modified Number
Time of last
modification

sortOrder Number Interface sort order

properties:

deviceIcon Number Virtual device icon

ip String IP address

port Number Port number

currentIcon String
Virtual device current
icon

mainLoop String Main loop code

saveLogs String Number of log

rows Array Array of rows

type String Type of element

elements Array Array of elements

id Number Element ID number

lua Boolean Lua usage status

waitForResponse Boolean
Waiting for response
status

caption String Showed caption

name String Name of element

empty Boolean Empty status

msg String Message text

buttonIcon Number Element icon

favourite Boolean
Status of being
favourite

main Boolean
Status of being main
element

actions:

pressButton Number Press button

setSlider Number Set slider

setProperty Number Set property

Example:

{

 "id": 167,

 "name": "Scene activation",

 "roomID": 0,

 "type": "virtual_device",

 "properties":

 {

 "deviceIcon": 0,

 "ip": "",

 "port": 0,

 "currentIcon": "0",

 "mainLoop": "",

 "saveLogs": "1",

 "rows":

 [

 {

 "type": "button",

 "elements":

 [

 {

 "id": 1,

 "lua": true,

 "waitForResponse": false,

 "caption": "Scene activation",

 "name": "Button11",

 "empty": false,

 "msg": "HC2 = Net.FHttp("192.168.100.45") HC2:setBasicAuthentication("admin

 "buttonIcon": 0,

 "favourite": false,

 "main": true

 }

]

 },

 {

 "type": "button",

 "elements":

 [

 {

 "id": 2,

 "lua": true,

 "waitForResponse": false,

 "caption": "Deactivate scene",

 "name": "Button21",

 "empty": false,

 "msg": "HC2 = Net.FHttp("192.168.100.45") HC2:setBasicAuthentication("admin

 "buttonIcon": 0,

 "favourite": false,

 "main": false

 }

]

 }

]

 },

 "actions":

 {

 "pressButton": 1,

 "setSlider": 2,

 "setProperty": 2

 },

 "created": 1405599778,

 "modified": 1405599778,

iOS devices

URL: /api/iosDevices

Methods: GET

Description: Returns a list of added iOS devices and their parameters.

Response: Gets an object containing added iOS devices.

Name Type Description

id Number iOS device ID

name String iOS device name

udid String
Unique device
identifier

push Boolean
Push notifications
status

Example:

{

 "id": 1739,

 "name": "iPod (Tom Jones)",

 "udid": "2185A2FE-BBFF-4B83-8BDC-56508C0BF39B",

 "push": true

}

VoIP devices

URL: /api/voip

Methods: GET, PUT

Description: Returns a list of VoIP clients associated with Home Center end
their parameters.

Response: Gets an array of objects containing configured VoIP clients.

Name Type Description

voipDevices Array Array of voip devices

id Number VoIP client ID

sipDisplayName String SIP client name

sipUserID String SIP user ID

 "sortOrder": 117

}

deviceIcon String Type of used icon

Example:

{

 "voipDevices":

 [

 {

 "id": 2,

 "sipDisplayName": "admin",

 "sipUserID": "555",

 "deviceIcon": "91"

 }

]

}

Icons

URL: /api/icons

Methods: GET

Description: Returns a list of icons available in the system.

Response: Gets an object containing interface icons.

Name Type Description

id Number Icon ID number

deviceType String
Type of assigned
icon

iconSetName String Name of icon set

Example:

{

 "id": 7,

 "deviceType": "com.fibaro.binarySwitch",

 "iconSetName": "alarm"

}

Panels

SMS notifications

URL: /api/panels/sms

Methods: GET, PUT

Description: Returns number of available sms and list of associated phone
numbers.

Response: Gets an array of objects containing predefined phone numbers
getting sms notifications.

Name Type Description

smsCount Number
Number of available
sms

phones Array Array of added
phones

id Number Phone ID

number String Phone number

alarm Boolean Alarm association

{

 "smsCount": 0,

 "phones":

 [

 {

 "id": 3574,

 "number": "4855555525255",

 "alarm": false

 }

]

}

Location

URL: /api/panels/location

Methods: GET, DELETE, POST, PUT

Description: Returns a list of predefined locations and their parameters.

Response: Gets an object containing predefined locations.

Name Type Description

id Number Location id

name String Location name

latitude Number Location latitude

longitude Number Location Longitude

created Number Time of creation

modified Number
Time of last
modification

Example:

History panel

URL: /api/panels/history

Methods: GET

Description: Gets an array of objects containing actions stored in the event
panel for a specified time period

Response:

Name Type Description

id Number Event ID

deviceID Number Device ID

timestamp Number Timestamp value

value String Parameter value

Example:

[

 {

 "id": 2,

 "deviceID": 269,

 "timestamp": 1409204323,

 "value": "26.0"

 },

 {

 "id": 1,

 "deviceID": 268,

 "timestamp": 1409204323,

 "value": "23.0"

 }

]

Notifications panel

URL: /api/panels/notifications

Methods: GET, DELETE, POST, PUT

Description: Returns a list of notifications and their names.

Response: Gets an object containing all stored notifications.

Name Type Description

id Number Notification ID

name String Notification name

Example:

{

 "id": 1,

 "name": "not1"

}

Heating panel

URL: /api/panels/heating

Methods: GET, DELETE, POST, PUT

Description: Returns a list of heating zones and their settings, such as
temperature sets.

Response: Gets objects containing heating panel settings.

Name Type Description

id Number Heating zone ID

name String Heating zone name

properties:

handTemperature Number Manual mode
temperature

handTimestamp Number
Manual mode
timestamp

vacationTemperatur
e

Number
Holiday mode
temperature

Example:

{

 "id": 1,

 "name": "zone1",

 "properties":

 {

 "handTemperature": 22,

 "handTimestamp": 1405172970,

 "vacationTemperature": 18

 }

}

AC panel

URL: /api/panels/cooling

Methods: GET, DELETE, POST, PUT

Description: Returns a list of cooling zones and their settings, such as
temperature sets.

Response: Gets objects containing AC panel settings.

Name Type Description

id Number Heating zone ID

name String Heating zone name

properties:

handTemperature Number Manual mode
temperature

handTimestamp Number
Manual mode
timestamp

vacationTemperatur
e

Number
Holiday mode
temperature

Example:

{

 "id": 2,

 "name": "zone1",

 "properties":

 {

 "handTemperature": 20,

 "handTimestamp": 1405172970,

 "vacationTemperature": 24

 }

}

Humidity panel

URL: /api/panels/humidity

Methods: GET, DELETE, POST, PUT

Description: Returns a list of humidity zones and their settings, such as
humidity levels.

Response: Gets objects containing humidity panel settings.

Name Type Description

id Number Heating zone ID

name String Heating zone name

properties:

handHumidity Number Manual mode
humidity level

handTimestamp Number
Manual mode
timestamp

vacationHumidity Number
Holiday mode
humidity level

Example:

{

 "id": 1,

 "name": "zone1",

 "properties":

 {

 "handHumidity": 30,

 "handTimestamp": 1405172970,

 "vacationHumidity": 50

 }

}

Alarm panel

URL: /api/panels/alarm

Methods: GET, DELETE, POST, PUT

Description: Returns a list of alarms and associated devices.

Response: Gets an object containing Alarm panel settings.

Name Type Description

id Number Alarm ID

name String Alarm name

properties:

armDeviceID Number Arm Device ID

armStateDeviceID Number Arm State Device ID

alarmStateDeviceID Number
Alarm State Device
ID

Drenchers panel

URL: /api/panels/drenchers

Methods: GET, DELETE, POST, PUT

Description: Returns a list of added drenchers and their parameters.

Response: Gets an array of objects containing Drenchers panel settings.

Name Type Description

adjustWater Number
Adjusted water
percentage

rainDelay Number Rain delay in hours

cycles Number
Number of cycles
per day

drenchers Array Array of drenchers

id Number Sprinkler ID

name String Sprinkler name

mode String Active mode

dead Boolean Status of being dead

manualTime Number
Manual time of
enable

days Array ?

cycles Array ?

nextDrenching Number
Time of next
drenching

state Boolean Current status

Example:

{

 "adjustWater": 0,

 "rainDelay": 0,

 "cycles": 1,

 "drenchers":

 [

 {

 "id": 1613,

 "name": "1612.0",

 "mode": "off",

 "dead": "false",

 "manualTime": 0,

 "days":

 [

],

 "cycles":

 [

],

 "nextDrenching": 0,

 "state": "true"

 }

]

}

Favorite colors

URL: /api/panels/favoriteColors

Methods: GET, DELETE, POST, PUT

Description: Returns a list of favorite colors presets, representing their RGBW
values.

Response: Gets an object containing user’s favorite colors.

Name Type Description

id Number Preset ID

r Number Red color value

g Number Green color value

b Number Blue color value

w Number White color value

Example:

{

 "id": 1,

 "r": 125,

 "g": 44,

 "b": 125,

 "w": 0

}

Fibaro Alarm panel

URL: /api/panels/fibaroAlarm

Methods: GET, PUT

Description: Returns Fibaro Alarm settings list, its properties, conditions, etc.

Response: Gets an array of objects containing Fibaro Alarm panel settings.

Name Type Description

lastAlarmTime Number Time of last alarm

triggerActions Array Array of triggered
actions

id Number Action ID

name String Action name

description String Action description

time Number Time of action

isPredefined Boolean
Status of being
predefined

isActive Boolean
Status of being
active

properties:

conditions Array Array of conditions

type String
Type of device used
in alarm

properties Array Arrau of alarm
properties

name String Name of property

value String Device value

Example:

{

 "lastAlarmTime": 0,

 "triggerActions":

[

 {

 "id": 2,

 "name": "Lights On",

 "description": "Switch on selected lights or all lights in the house.",

 "time": 0,

 "isPredefined": true,

 "isActive": false,

 "properties":

 {

 "conditions":

[

 {

 "type": "com.fibaro.binarySwitch",

 "properties":

[

{

"name": "isLight",

"value": "1"

}

]

 },

 {

 "type": "com.fibaro.multilevelSwitch",

 "properties":

[

{

"name": "isLight",

"value": "1"

}

]

 }

]

 }

 }

]

}

Energy panel

URL: /api/panels/energy

Methods: GET

Description: Returns Energy panel data

Response: ?

Temperature panel

URL: /api/panels/temperature

Methods: GET

Description: Returns Temperature panel data

Response: ?

Events panel

URL: /api/panels/event

IP/api/panels/event?from=xxx&to=yyy

IP – Home Center IP address

xxx – start date timestamp

yyy – end date timestamp

Methods: GET

Description: Returns events history from defined time, device states, state
changes, their old and new values, etc.

Response: Gets an object containing events panel settings.

Name Type Description

id Number Event ID

type String Event type

timestamp Number Event timestamp

deviceID Number Device ID

deviceType String Device type

propertyName String
Device property
name

oldValue Number Old device value

newValue Number New device value

Example:

{

 "id": 8126,

 "type": "DEVICE_EVENT",

 "timestamp": 1404723546,

 "deviceID": 1701,

 "deviceType": "com.fibaro.temperatureSensor",

 "propertyName": "value",

 "oldValue": 28.6,

 "newValue": 26.7

}

Plugins

Plugins types

URL: /api/plugins/types

Methods: GET

Description: Returns a list of plugins divided into categories and their
parameters.

Response: Gets an array of objects containing all available plugins.

Name Type Description

types Array
Array of plugin’s
types

category Number
Number of plugin
category

plugins Array Array of plugins

type String Type of plugin

name String Name of plugin

description String Plugin description

user String Plugin creator

compatibility Array Plugin compatibility

predefined Boolean Predefinition status

version String Plugin version

url String Plugin URL

installed Boolean
Status of being
installed

Example:

Plugins installed

URL: /api/plugins/installed

Methods: GET

Description: Returns a list of installed plugins, their names and predefinition
status.

Response: Gets an object containing all installed plugins.

Name Type Description

name String Name of plugin

predefined Boolean
Plugin predefinition
status

Example:

{

 "types":

[

 {

 "category": 0,

 "plugins":

[

 {

 "type": "com.fibaro.dscAlarm",

 "name": "DSC Alarm",

 "description": "Add and configure Satel control panel, check states of inputs, outp

 "user": "Fibar Group Sp. z o.o.",

 "compatibility":

 [

 "iPad",

 "iPhone",

 "AndroidPhone",

 "config"

],

 "predefined": true,

 "version": "1.0",

 "url": "panels/external-alarm.html?type=com.fibaro.dscAlarm",

 "installed": true

 }

],

 "installed": 6

 }

]

}

{

 "name": "com.fibaro.satelAlarm",

 "predefined": true

}

Other

Login status

URL: /api/loginStatus

Methods: GET, PUT

Description: Returns a list of parameters related to user’s login, such as status,
username or type of currently logged in user.

Response: Gets an object containing current login status.

Name Type Description

status Boolean Login status

userID Number ID of logged in user

username String Username

type String
Type of logged in
user

Example:

{

 "status": true,

 "userID": 2,

 "username": "admin",

 "type": "superuser"

}

Password reminder

URL: /api/passwordForgotten

Methods: GET

Description: Returns a password to your account sending it by e-mail.

Response: Gets user’s password in case of forgetting.

Correct response:

{

 "status": "OK"

}

Example:

IP/api/passwordForgotten?login=xxx

IP – your Home Center IP address

xxx – your login

Refresh states

URL: /api/refreshStates

Methods: GET

Description: Returns refreshment details and performed changes.

Response: Gets an object containing detailed last status refreshments.

Name Type Description

status String Current status

last Number Last refresh

date String Status date

timestamp Number Timestamp

logs Array Detailed logs

changes Array Changes details

Example:

{

 "status": "IDLE",

 "last": 38,

 "date": "12:58 | 21.07.2014",

 "timestamp": 1405940300,

 "logs":

 [

],

 "changes":

 [

]

}

Network discovery

URL: /api/networkDiscovery/arp

Methods: PUT

Description: Find IP and MAC physical addresses for specified network

Response:

Debug scene

URL: /api/scene/ID/debugMessages

ID – scene ID

Methods: GET

Description: Returns messages displayed by scene of given ID.

Response: Gets an array of objects containing messages displayed during
scene debug.

Name Type Description

timestamp Number Scene timestamp

type String Type of message

txt String Debugged text

Example:

[

 {

 "timestamp": 1406036436,

 "type": "DEBUG",

 "txt": "Helloworld!"

 }

]

Call Action

URL: /api/devices/deviceID/action/actionName

deviceID – ID of an existing device

actionName – Name of an action

Methods: POST

Description: Trigger an action of the specified device

Response:

Weather status

URL: /api/weather

Methods: GET

Description: Returns a list of current and previous weather parameters
downloaded from weather.yahoo.com for your location.

Response: Gets an object containing weather data.

Name Type Description

ConditionCode String
Current weather
condition code

Humidity String
Current humidity
level

PreviousConditionC
ode

String
Previous weather
condition code

PreviousHumidity String
Previous humidity
level

PreviousTemperatur
e

String
Previous
temperature

PreviousWeatherCo
nditionConverted

String
Previous weather
condition

PreviousWind String Previous wind speed

Temperature String Current temperature

WeatherCondition String
Current weather
condition

WeatherConditionCo
nverted

String
Current weather
condition

Wind String Current wind speed

saveLogs String Number of log

TemperatureUnit String
Selected
temperature unit

Example:

{

 "ConditionCode": "34",

 "Humidity": "45",

 "PreviousConditionCode": "30",

 "PreviousHumidity": "48",

 "PreviousTemperature": "27",

 "PreviousWeatherConditionConverted": "cloudy",

 "PreviousWind": "24.14",

 "Temperature": "28",

 "WeatherCondition": "rain",

 "WeatherConditionConverted": "clear",

 "Wind": "27.36",

 "saveLogs": "1",

 "TemperatureUnit": "C"

}

Diagnostics

URL: /api/diagnostics

Methods: GET

Description: Returns a list of system parameters, such as memory usage, cpu
load, etc.

Response: Gets an array of objects containing system diagnostic data.

Name Type Description

memory Number
Percentage of free
RAM memory

storage Array Storage array

name String Disk name

used Number
Percentage of used
space

cpuLoad Array Array of CPU load

user String

Percentage of CPU
utilization that
occurred while
executing at the user
level

nice String

Percentage of CPU
utilization that
occurred while
executing at the user
level with nice
priority

system String

Percentage of CPU
utilization that
occurred while
executing at the
system level

idle String

Percentage of time
that the CPU was
idle and the system
did not have an
outstanding disk I/O
request.

Example:

{

 "memory": 62,

 "storage":

[

 {

 "name": "system",

 "used": 40

 },

 {

 "name": "recovery",

 "used": 22

 }

],

 "cpuLoad":

[

 {

 "cpu0":

 {

 "user": "291016",

 "nice": "116",

 "system": "237122",

 "idle": "43946780"

 }

 },

 {

 "cpu1":

 {

 "user": "316296",

 "nice": "324",

 "system": "286170",

 "idle": "45617346"

 }

 }

]

}

https://developer.fibaro.com/docs
https://developer.fibaro.com/ide
https://developer.fibaro.com/forum
https://developer.fibaro.com/support
https://developer.fibaro.com/privacy-policy
https://developer.fibaro.com/condition-of-use

	Pusta strona

